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What got it all started!

Wetland ponds in the Hudson Bay Lowlands 

were sources of the greenhouse gases CO2 and 

CH4 to the atmosphere.

If you flooded landscapes to create reservoirs 

for hydroelectricity production, would they also 

be were sources of CO2 and CH4 to the 

atmosphere.



This is a big question 

because in the era of 

adapting to climate 

change, hydroelectricity 

was being touted as 

“carbon-free” source of 

energy.



Another issue is the production 

and bioaccumulation of MeHg in 

reservoirs following flooding.

This creates long-term socio-

economic problems for 

Indigenous peoples and others 

that rely on healthy freshwater 

resources and services for their 

ways of life.

Mercury in northern pike in Hydro Quebec reservoirs





Flooding landscapes changes how they naturally function

ALIVE AND PRODUCTIVE



Flooding landscapes changes how they naturally function

DEAD AND DECAYING



What is the net impact of flooding landscapes on 

greenhouse gas (CO2 and CH4) emissions and 

methylmercury production?

Does flooding different amounts of organic carbon 

change the intensity of these impacts?

How long do these impacts last post-flooding?

Are hydroelectric reservoirs important net sources of 

greenhouse gases to the atmosphere?

Using unique whole-ecosystem experimentation at the 

Experimental Lakes Area, we were able to ask:



What is the fate of mercury and 
carbon when reservoirs are 

created?



Whole-ecosystem manipulations

• Scientists at ELA use mass balance budgets on 
impacted and natural lakes to determine the fate of 
matter in lakes

Prior to flooding

Experimental Reservoirs at the ELAWhole ecosystem manipulations

Year 5



Experimental Reservoirs at the ELA

Our “currency” was Mercury (Hg) and Carbon

What you need to create a mass budget



Many environmental 
factors affect MeHg 
production

Because bacteria produce MeHg, our hypothesis was that 
increased carbon in reservoirs would fuel MeHg production

Microbial methylation in 
wetlands and anoxic 
sediments is the main 
source of MeHg in 
aquatic environments

Mercury transformations in the environment



Our “currency” is Mercury (Hg)

Our “scale” is whole ecosystem and before/after

Experimental Reservoirs at the ELAWhat you need to create a mass budget

Experimental
Lakes
Area
Reservoir
Project



Experimental Reservoirs at the ELABuilding the dam at the wetland outflow



Preflood (1992)

Nine years postflood (2001)Five years postflood (1997)

First year of flooding (1993)

Floating of the peat in the years post-flood
Experimental Reservoirs at the ELAFloating peat in the flooded wetland



Mineral soil

Fulvic/humic soil and litter
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FLooded

Uplands

Dynamics

EXperiment

Flooding upland forests



Preflood Postflood

Low and Medium Carbon Sites

High Carbon Site

Upland reservoirs



Our “currency” is Mercury (Hg)

Our “scale” is whole ecosystem and before/after

Our “transactions” are how MeHg moves and 
changes

Experimental Reservoirs at the ELAWhat you need to create a mass budget
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Total MeHg in FLUDEX reservoirs – Low C
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Preflood Year 1 Year 2 Year 3
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Total MeHg in FLUDEX reservoirs – High C
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.

Minimizing carbon flooded 
minimized production of MeHg

in reservoirs



Total MeHg in FLUDEX reservoirs – High C
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Results from ELARP
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.

Minimizing carbon flooded 
minimized the duration of MeHg 

production in reservoirs



• Muskrat falls stuff??



Experimental Reservoirs at the ELANot just mass budgets…



Concentrations of CO2 and CH4 in the reservoir water
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Average reservoir surface 

fluxes of CO2 and CH4 in 

first 2-3 years post-flood





Updated estimates of CO2 and CH4 emissions from global 

hydroelectric reservoirs



Greenhouse gas emissions from reservoirs continues to be a hot 

topic of research!





Flooding landscapes increases net greenhouse gas (CO2

and CH4) emissions and methylmercury production

Flooding less amounts of organic carbon lessens the 

intensity of these impacts

The duration of these impacts post-flooding depends on 

the amount of organic carbon flooded

Hydroelectric reservoirs are net sources of greenhouse 

gases to the atmosphere

Using unique whole-ecosystem experimentation at the 

Experimental Lakes Area, we were able to conclude:

CONCLUSIONS




